Distribution of radionuclides in soils – dependence on soil parameters

Volker Hormann

BIOPROTA-Meeting Nancy 24.05.2012
Contents

• modelling K_d
• model verification
• sensitivity study for Refesol 2 (variation of soil parameters)
• redox sensitivity
• discussion
Model description

Geochemical code: PHREEQC (Parkhurst and Appelo 1999)

Complexation models used with PHREEQC:
Dzombak and Morel (1990)
Bradbury and Baeyens (2009, 2009)
Tipping (Model VI, 2002)

Model components:
• soil solution
• oxalate extractable hydrous ferric oxides (HFO) \textit{DM}
• clay (illite as representative material, including frayed edge sites) \textit{BB}
• immobile organic matter \textit{T}
• dissolved organic matter (DOM) \textit{T}
• solid phases
Model Verification

Study of 18 different U-contaminated soils: Vandenhove et al. (2007)

Two Cs-contaminated soils: Nisbet (1995)

Figure 1. Comparison of measured and calculated U concentrations in soil solution

Figure 2. Activity of 134Cs in soil solution before and after treatment with 11.5 m potassium
Reference soils (Refesols)

<table>
<thead>
<tr>
<th>Refesol</th>
<th>sand</th>
<th>silt</th>
<th>clay</th>
<th>pH</th>
<th>C<sub>org</sub></th>
<th>CEC<sub>eff</sub></th>
<th>Fe<sub>ox</sub></th>
<th>Al<sub>ox</sub></th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-A</td>
<td>71</td>
<td>24</td>
<td>5</td>
<td>5.7</td>
<td>0.9</td>
<td>37.9</td>
<td>1.57</td>
<td>0.95</td>
<td>Cambisol</td>
</tr>
<tr>
<td>02-A</td>
<td>2</td>
<td>83</td>
<td>15</td>
<td>6.6</td>
<td>1.3</td>
<td>133.2</td>
<td>3.54</td>
<td>0.69</td>
<td>Stagnic luvisol</td>
</tr>
<tr>
<td>04-A</td>
<td>85</td>
<td>11</td>
<td>4</td>
<td>5.1</td>
<td>2.9</td>
<td>85.7</td>
<td>0.63</td>
<td>1.51</td>
<td>Gleyic podsol</td>
</tr>
<tr>
<td>06-A</td>
<td>9</td>
<td>55</td>
<td>36</td>
<td>6.8</td>
<td>2.5</td>
<td>236.6</td>
<td>5.03</td>
<td>1.57</td>
<td>Cambisol-Rendzina</td>
</tr>
<tr>
<td>08-A</td>
<td>69</td>
<td>21</td>
<td>10</td>
<td>5.3</td>
<td>1.04</td>
<td>51.2</td>
<td>3.50</td>
<td>0.35</td>
<td>Fluvisol</td>
</tr>
<tr>
<td>09-A</td>
<td>62</td>
<td>30</td>
<td>8</td>
<td>5.5</td>
<td>0.86</td>
<td>39.2</td>
<td>2.74</td>
<td>0.73</td>
<td>Luvisol</td>
</tr>
<tr>
<td>12-G</td>
<td>32</td>
<td>47</td>
<td>21</td>
<td>5.1</td>
<td>3.75</td>
<td>126.7</td>
<td>7.65</td>
<td>2.28</td>
<td>Cambisol</td>
</tr>
</tbody>
</table>

Table 1: characteristics of the reference soils, texture and C_{org} in %, CEC_{eff} (exchangeable Ca, Mg, H and Na) in mmolc/kg, oxalate-extractable oxides in g/kg.

source: K.H. Weinfurtner, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
Assumptions for the Refesol model

The composition of the soil solution of the Refesols is not yet known → use of a „standard“ soil solution for modeling:
(concentrations are geometric means of ranges of frequent values, Scheffer/Schachtschabel 2010):

<table>
<thead>
<tr>
<th>Na</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
<th>NH₄</th>
<th>Fe(3)</th>
<th>Al</th>
<th>Si</th>
<th>Cl</th>
<th>N</th>
<th>P</th>
<th>S</th>
<th>DOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>9.5</td>
<td>11</td>
<td>80</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>24.5</td>
<td>20</td>
<td>0.1</td>
<td>39</td>
<td>54</td>
</tr>
</tbody>
</table>

Table 2: Composition of the „standard“ soil solution (values in mg/l)

• Fe and Al determined by equilibrium with ferrihydrite and gibbsite
• no phosphate fertilization → important for comparison with literature values
• DOC 27 mg/l, org. C 50% of org. matter
• concentration of contaminating nuclides: 1 Bq/kg DW
Calculated distribution coefficients – comparison with literature values

- calculation using „standard“ soil solution from Table 2
- equilibration of initial soil solution with surface assemblage \(\rightarrow\) equilibration with contaminated soil solution
- soil saturated with water

Fig. 3: Logarithmic distribution coefficient compared to literature values (IAEA Tecdoc 1616)
Important soil parameters and processes

- contaminant concentration
- dilution/evaporation
- clay (mineral) content
- Fe-/Al-oxides (oxalate extractable)
- immobile organic matter
- dissolved organic matter
- pH
- (redox state)

conditions for modelling: saturated soil, no oxygen in solution
Concentration dependence of K_d

\rightarrow saturation effects
Dilution

dilution but constant activity: \rightarrow less competition by major ions
Evaporation must not be confused with the case of unsaturated soil (relative concentrations constant, same chemistry).

Evaporation at constant activity: → more competition by major ions
Clay content

complexation on clay highly significant for Cs, moderate for Ni, negligible for U and Se (no clay sorption model for Se as yet)

K_d Ni:
150 l/kg (0 % clay)
200 l/kg (55 % clay)

note linear scale!
Content of Fe/Al oxides

strong influence of Fe/Al oxides for U and Se

red: values for Luvisol (Refesol 2)
Immobile organic matter

Soil density effects and blocking of mineral surface sites by org. matter not included

strong influence on Ni, moderate on U, no model for Se binding as yet
Dissolved organic matter

65% of DOM is active

average content of active DOM: 35.6 mg/l

moderate to strong influence on Ni and U, none on Cs, no model for Se binding as yet
CO$_2$ pressure (organic activity)

red: values for Luvisol (Refesol 2)

formation of carbonate complexes that keep U in solution, competition effects by carbonate sorption on Fe/Al oxides
Variation of pH

pH (equilibrium with Calcite)
SI Gibbsite (pH > 6) = 2

K\text{d} in l/kg

no precipitation reactions

pe = 13.5…4.5

pH dependence of K\text{d}(U) in batch experiments
(Vandenhove et al. 2007)
Comparison of ranges

K_d ranges

- Cs
- Ni
- U
- Se

- Concentration
- Evaporation
- Dilution
- Clay
- Feox
- pCO2
- pH/pe
- DOM
- Org. C
Conclusions – sensitivity study

• in many cases the distribution of radionuclides strongly depends on soil parameters
• the variation of a single parameter may change the K_d by more than an order of magnitude
• the K_d variations can reasonably be modelled by PHREEQC
• K_d variability is important for predicting the influence of environmental conditions on radionuclide distributions in soils
Redox states of soils

In soil solutions, a couple of elements (O, C, N, S, Fe) may occur in various oxidation states e.g. iron as Fe$^{2+}$ or Fe$^{3+}$

→ electron transfer

example: reduction of ferric hydroxide

$$4 \text{Fe(OH)}_3 + 12 \text{H}^+ + 4\text{e}^- \rightarrow 4 \text{Fe}^{2+} + 12 \text{H}_2\text{O}$$

the redox potential E_h is given by the Nernst equation:

$$E_h = E_h^0 - \frac{0.059}{n} \cdot \log \frac{[\text{Red}]}{[\text{Ox}]} \quad \text{(at 25°C)}$$

E_h^0: standard potential
Against hydrogen electrode
n: number of transferred electrons
{…}: chemical activity
Redox states of soils

lower pe: reducing conditions, high electron activity
higher pe: oxidizing conditions, low electron activity

from Sposito 1989

from Appelo/Postma 2005
Modelling redox zonation

decomposition of organic matter
soil: RefeSol 2 (Luvisol)

Assumptions:
• Decomposition causes no significant changes in the number of organic binding sites
• Stepwise decomposition of org.matter starting at pe ~ 13 – 14 (soil solution saturated with oxygen)
• Reductive decomposition of hydrous ferric oxide (decreasing number of Hfo binding sites)
• Se precipitated as elemental Se or as FeSe, Ni as Ni(OH)$_2$, U as Uraninite (UO$_2$)
• In the K_d calculations the precipitated material is assigned to the solid phase (may still be present in the solution as a colloid, e.g. Se !)
Redox behaviour of characteristic solutes

behaviour as described in the literature (e.g. Appelo & Postma 2005)
Redox behaviour of uranium

Below pe 3:
Decomposition of Hfo

→ Release of ions bound by complexation

Below pe 0:
Precipitation of uraninite (UO$_2$)

White circles: Hfo content
Black diamonds: distribution coefficient

$pCO_2 = 3.5$

$pCO_2 = 1.75$

More carbonate complexes
Redox behaviour of nickel

Precipitation of Ni(OH)_2 at low pe

Formation of mixed Al-hydroxides discussed in the literature
Redox behaviour of Caesium

Ionic strength effect due to ion release (Hfo decomposition!)

Precipitation of minerals at low pe, e.g. FeS

black diamonds: distribution coefficient
white circles: ionic strength
Redox behaviour of selenium

pe 9 (531 mV): transformation of selenate to selenite in solution
pe 2.5 (150 mV): precipitation of elemental Se
pe -0.4 (-25 mV): precipitation of FeSe

No modelling of Se binding to org. matter!

from Ashworth et al. 2008
(sandy loam, column experiment, Hfo content not specified)

Colloidal Se in solution?
Conclusions – redox study

- Redox behaviour dominated by Hfo dissolution and precipitation of nuclide
- K_d for U und Se degrees of magnitude higher in the anoxic region
- K_d definition: how to deal with finely dispersed or colloid material?
- Need for studies that provide all parameters necessary for modelling

